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Abstract

Condition queries on distributed data ask where particular condi-

tions are satisfied. It is possible to represent condition queries as

geometric objects by plotting field data in various spaces derived

from the data, and by selecting loci within these derived spaces

which signify the desired conditions. Rather simple geometric par-

titions of derived spaces can represent complex condition queries

because much complexity can be encapsulated in the derived space

mapping itself A geometric view of condition queries provides

a useful conceptual unification, allowing one to intuitively under-

stand ninny existing vector field feature detection algorithms --and

to design new ones E as variations on a common theme. A geo-

metric representation of condition queries also provides a simple

and coherent basis for computer implementation, reducing a wide

variety of existing and potential vector field feature detection tech-

niques to a few simple geometric operations.

Keyvvords: computational fluid dynamics, feature detection flow
visualization, selective visualization.

1 Introduction

Three-dimensional vector fields are hard to visualize in their en-

tirety because they contain relatively high-dimensional entities in

a relatively high-dimensional space. Discretized fields of N nodes

with three-com_nent vectors live in a 3N-dimensional configura-
tion space, R ' . For even small values of N, the bandwidth re-

quired to display certain features of such high-dimensional entities

can easily overwhelm that of a two-dimensional display.

It is natural to resort to selective visualization [7] of high-

dimensional geometric objects, to reveal various features or aspects
of their structure. For vector fields, one can make selections based

on location in the field, or on particular geometric or topological _

conditions manifested by the vectors and their distribution in the

field. Selective visualization of vector fields is tantamount to query-

ing locations or conditions throughout the field, and then somehow

displaying the results of that query. A location que_' on distributed

data asks for the conditions at a particular location; a condition

query asks where particular conditions arc satisfied [2J.

Most scientific visualization techniques favor location queries

over condition queries -- that is, the techniques generally allow

one to select field locations more readily than field conditions, and

the techniques gcncr',gly display the conditions at a given location

more effectively thane they indicate the locations at which given con-

ditions hold. Techniques involving isosurfaces are the obvious ex-

ception to this rule.

This paper _,ttempts to provide a general framework for thinking

about the types of condition queries applicable to three-dimensional

vector fields for the purposes of scientific visualization. Actually

the treatment will not be all that general, and will instead be heav-

ily biased towards a few rather parochial examples, taken from the
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fields of computational fluid dynamics. This restriction in scope

is largely unavoidable, since the sorts of condition queries which

prove useful depend on the sorts of data on hand. Commonly, sci-

entific visualization techniques that rely upon condition queries are

known as feature detection or feature extraction techniques; and the

notion of what constitutes an interesting feature is domain specific.

The approach taken here is geometrically motivated. The pri-

mary unifying theme is to look at vector field data, and quantities

derived from the data, in spaces derived from the data. By itself,
the distribution of the data in these "derived spaces" can be infor-

mative. In addition, geometric partitioning in appropriate derived

spaces can select data subsets based on particular data attributes,
and therefore allows one to represent condition queries as geomet-

ric objects.

Representing condition queries as geometric objects is useful for
two reasons. First, it provides a useful conceptual unification, al-

lowing one to intuitively understand a wide range of existing fea-

ture detection techniques as variations on a common theme, and

allowing one to imagine new techniques as further thematic mod-

ifications. Second. the geometric viewpoint pro-ides a simple and

coherent basis for computer implementation E a few basic geomet-

ric operations can support a varied array of analytic and exploratory

vector field techniques.

Both conceptually and practically, representing condition

queries geometrically can be more intuitive and less cumbersome

than purely algebraic representations, or more "semantic" methods,

using a custom query language. The geometric approach provides a

powerful and general way to analyze and explore three-dimensional

vector fields with condition queries.

2 Condition queries on vector fields

Condition queries on field data ask where particular conditions

hold. A visualization technique which allows a user toeffectively

pose and answer a condition query must deal with three distinct
sorts of data.

I. First, there is the field which is being queried. We shall refer

to this as the target field. In the present work. target fields will
be three-dimensional vector fields.

2. Second, there is the query itself. The query consists of a set of

conditions that are evaluated at each target field location. The

conditions may be constant, or they may vary with target field
location.

3. Third, there is the resuh of applying the query to the target

field. The result consists of the set of target field locations

which satisy the conditions posed in the query. If thc target

field is a three-dimensional vector field, the result can be any

collection of 0D, I D, 2D. or 3D loci.

Depending on the identity of the target field, and the nature of

the query, one may attach a particular significance or interpretation

to the result, and perhaps even recognize it as a "'feature". For this



reason,certaintypesof condition queries are referred to as feature

detection or feature extraction techniques. For example, a condition

query may identify a "vortex core" or "separation surface".

In this paper we shall not say a whole lot about how the final

results of condition queries are displayed, or about other things that

might be done with them. Van Walsum and Post [7] have outlined

some possibilities for using the results of condition queries in ways

other than direct visualization. We shall be primarily concerned
here with the condition queries themselves, and how we can repre-

sent [conceive of] them as geometric objects.

2.1 Uniform vs nonuniform condition queries

There is a primary distinction between uniform condition queries,

which are constant with respect to target field location, and nonuni-

form condition queries, which vary with target field location. A

uniform condition query applies precisely the same local test at

each target field location. A nonuniform condition query applies

the same type of test at each target field location, but the actual

local test which is carried out is location dependent.

An important possibility is that nonuniform condition queries

can be locally derived -- that is, data from a target field location

can itself he used to generate the conditions against which the local

target field value is tested. Local derivations may also produce log-

ical branch points, from which different types of condition queries

are posed depending on the local context.

2.2 Geometry of data and geometry of queries in

derived spaces

Discretized field data can be plotted in varm,,_ spaces, where the co-

ordinates arc derived from the dependent (usually nonspatial) vari-

abies of the dazaset. Field points v,-,_h similar derived value_ x_ill

map to similar locations in these "derived spaces" [2], regardless of

their original relative spatial locatiofis. Mapping the entire field into

a derived space results in an image of the dataset. Certain features

of derived space images -- including overall ranges, patterns of dis-

tribution, and coherent structures _ graphically depict the derived

quantity values of the underlying data; and can be very informative.

The fundamental idea developed here is that partitions of derived

spaces, which select some range of derived quantities, can be used

to represent condition queries geometrically. More specifically, a

derived space can be partitioned into "pass" and "fail" regions (not

necessarily contiguous or simply connectedl, and a target field loca-

tion can then be conditionally judged according to the derived space

region in which it falls. We shall refer to those regions of the de-

rived space which signify a positive outcome of the condition query
as the condition loci. For a uniform condition query, a single par-

tition of the derived space is used for all target field locations. For

a nonuniform condition query, a new partition (and perhaps even a

new derived space) is constructed at each target field location, usu-

ally incorporating 1,)cal information.

Many derived spaces have geometrically significant regions or

a natural structure which allows them to be partitioned a priori

for certain kinds of condition queries. There is also the possibil-

ity of target field data driven partitioning of a derived space. This

is the usual case for nonuniform condition queries, in which local

target field data are used to synthesize a local test. Even for uni-

form condition queries, specification of the single globally applied

derived space partition might be guided by features of the derived

space image. In either case, rather simple geometric partitions of

derived spaces can represent complex condition queries, because

m,ch complexity can be encapsulated in the derived space map-

ping itself

There are a multitude of derived spaces, of various dimen-

sions, in which one could usefully map field data. For the

three-dimensional vector field data considered here, we will focus

on geometric representations of condition queries in three three-

dimensional derived spaces: (1) vector component space, (2) the

space of the three primary vector gradient tensor invariants, com-

monly referred to as PQR space, and (3) local linearized vector

spaces.

2.3 Vector component space queries

A vector component space (or just "component space") is a space

spanned by the basis vectors of some coordinate system. This is just

a vector space, but we add (or substitute) the term "component" to

emphasize that when we are considering vectors from fields, we ig-

nore their spatial coordinates, and use only their components to lo-

cate them in this (minimally) derived space. In other words, all vec-

tors from a field are rooted at the origin in vector component space.

For three-dimensional vector fields, the vector component space is

just R 3. In the following we will assume the three-dimensional vec-

tor component space to be spanned by the Cartesian basis vectors

(i,j.k), though a cylindrical (6_, 60, ¢_) or spherical (¢_,., re, 6_,) ba-
sis is sometimes more natural.

2.3.1 Simple geometric queries in component space

The basic attributes of vectors are magnitude and direction. A geo-

metric test on a vector asks whether its magnitude and/or direction

falls within certain ranges. A geometric condition query on a vec-

tor field applies either a constant or variable magnitude/direction

test at all points in the target field. Both uniform or nonuniform ge-
ometric condition queries on three-dimensional vector fields can be

posed as partitions of a three-dimensional vector component space,
simply by specifying which regions of component space satisfy the

condition -- that is, by geometrically describing the ,:ondition loci.

Simple geometric queries are represented by simple geometries

in component space. For example, the condition locus for querying

vectors having magnitudes within some range is a spherical shell
(or "hollow sphere") centered about the origin. The condition locus

for selecting vectors within some range of directions symmetrically

disposed about a central axis is a cone with its apex at the origin.

A condition locus specifying both magnitude and direction ranges
is the intersection of a spherical shell and a cone -- very nearly a

frustum of a cone, whose parallel faces are replaced by concentric

spherical sections.

Purely directional condition queries can be represented on a two-
dimensional subspace of the component space, a unit sphere some-

times called the direction sphere, or the Gauss sphere. A range of
directions is represented as a disk on the sphere. In the limit as the

disk is shrunk to a point, a uniform condition query yields isodi-

rection lines, along which the vector field is parallel to a fixed ref-
erence vector, in three-dimensional vector fields, isodirection lines

are one-dimensional loci, which can end only on critical points or
domain boundaries.

2.3.2 Representing directional queries as vector fields

Important cases arise when the condition locus is a vector subspace

of the component space. In R 3, the vector subspaces are a point at

the origin (0D), a line through the origin ( ID), and a plane through

the origin (2D).

In the case where the condition locus is a single point at the ori-

gin in component space, one is querying for target vector field lo-

cations with zero magnitude and unspecified direction, i.e.. critical

points.

In the case where the condition locus is a line through the origin

in component space, one is querying for vectors which are either

parallel or antiparallel to a given direction. The line can be thought
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Figure I: (Top left) Hemispherical cylinder flow dataset plotted in velocity component space, with a directional condition query represented as a cone• The apex of the cone is at

the origin, and the freest.ream maps to the nigh! side of the axis-aligned box 19 ° above the positive x-axis, ',,,hieh extends to the right. The "nose" protruding from the box on the right

indicates accelerated flow. and the "ponytail" extending to the left of the origin indicates flow reversal. (Top right) Same as left image, but the view is more head-on to the x-axis, and

all velocity vectors have been normalized so they lie on the unit "direction sphere", The same directional condition query is now a disk, or "spotlight" on the sphere, somewhat above

the image of the freestream (Bottom) Results of the condition query in top images, showing that flow is deflected upward at the "forehead" of the hemispheric cylinder, and is also

being swept upward into the primary vortices that extend along either side of the lop of the cylinder (see Figure 4),

of as a pair of antipodal points (or "poles") on the direction sphere,

or as the limiting case of an opposed pair of narrowing direction

cones in the full three-dimensional component space. One can test

if a vector lies in a given I D vector component subspace by asking

if it is parallel or antiparallel to a single representative from that

subspace, _'hich we can call a reference tangent vector. One may

wish to restrict the directional test to simple parallelism, in which

case the condition locus is a half-line or ray anchored at the origin

of component space (and no longer a vector subspace), or a single

point on the direction sphere.

In the case _,here the condition locus is a plane through the ori-

gin in coml_nent space, one is querying for vectors with one di-

rectional degree of freedom restricted. The plane can be thought

of as a great circle (an "equator") on the direction sphere• A plane

through the origin in component space can be represented by a ref-

erence normal vector, and we can ask if a vector lies in that plane

by asking if it is perpendicular to the reference normal vector.

Thus one can represent a test of membership of a given target

field vector in either a ID or 2D vector component subspace with

a single relerenee vector and an accompanying condition of paral-

lelism or perpendicularity. The set of all reference vectors, which

figure in relative directional tests over the entire target field, is itself

a vector field, which we shall refer to as the test vector field. Since

neither vector parallelism nor perpendicularity is affected by mag-

nitudc, a given relative directional condition query is represented

by an entire equivalence class of vector fields, all of which sharc

the same local tangent vectors. Also note that since parallelism and

perpendicularity are commutative relations, the roles of target and

test fields in these kinds of tests are interchangeable.

In general, the loci where two three-dimensional vector fields

are parallel are one-dimensional space curves. The loci where

two three-dimensional vector fields are mutually perpendicular are

generically two-manifolds, or surfaces• Both the parallelism and

perpendicularity tests do of course admit of higher-dimensional re-

sults, and although these are exceptional or degenerate cases they
may be important, e.g. the perpendicular velocity and vorticity

fields of complex lamellar flows in two-dimensi_ms or shear lay-

ers, and the parallel velocity and vorticity fields of Beltrami flows

in magnetohydrodynamics.

A constant test vector field and the condition of parallelism make

up a uniform directional query yielding isodirection lines. A uni-

form condition query for perpendicularity will produce a sort of
dual to the isodirection lines -- surfaces ("isonormal surfaces") in

the target vector field where a given direction (the reference nor-

mall is absent. Nonuniform directional condition queries are rep-

resented by general test vector fields. Important cases arise when

the test vector field is derived from the eigenvectors or eigenvec-

tor plane normals of the target vector gradient tensor Directional

tests involving these quantities can be particularly informative be-

cause they reveal how the target vectors stand in relation to their

own spatial derivatives. Such cases underlie many popular vector

field feature detection algorithms -- some detailed examples will
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Figure 2: (Top) PQR-space. with partitions that separate different flow topologies. The white parabola lies in the PQ plane. The osculating cubic sorf-',ces divide real and complex

eigenvalues: algebraic expressions for these and the other surfaces can be found in Ill. I.Bottom) Represenialive flow topologies, showing eigen','ector planes and eigenvectors

(eigenvectors are indicaled by inlerseciions of the planes in left and right cases). (left) node.saddle.saddle; (middle) swirling flow: (right) node-node-node.

be presented below.

2.3.3 General component space partitions

Vector subspace_ represent a very limited set of partitions of com-

ponent space. One can partition component space with affine sub-

spaces, arbitrary space curves, surfaces, volumes, or any union or

intersection of these• The utility of such condition loci in compo-
nent space will in general be domain and problem specific.

For uniform geometric condition queries in particular, the dis-

tribution of the target vector field image in component space can
usefully guide a conditional selection _ making it possible to de-

fine relative condition queries, like "faster than freestream" in a

llowfield. One can exploit the geometrically significant structure of

component space to facilitate such "'data driven" condition queries

with simple geometric tools, which can be quite useful in an inter-

active setting for exploratory data visualization and analysis.

2.4 PQR space queries

Partitions of vector component space do not by any means exhaust

Ihe possibilities for geometric representations of condition queries
on vector fields. An important class of condition queries that are

not representable by partitions of vector component space involve

the spatial deriratives of the target field vectors. These sorts of

condition queries allow one to probe the topological features of a
vector field

2.4.1 Simple topological queries

The first spatial derivatives of a three-dimensional vector field make

up a tensor field, which can be locally represented by a :3x :3 matrix,
the Jacobian matrix. The trace and determinant of this matrix, and

also the sum of the determinants of its three 2 x 2 submatrices, yield

three scalar quantities called the principa! im,ariants of the tensor.

These scalars are called invariants because they are unaffected by

changes of coordinate system•

The principal invariants of the :3 × 3 Jacobian matrix are com-

monly referred to as P, Q. and R. These quantities can be used

to construct a three-dimensional derived space, which we will call

PQR-space. Each point in a three-dimensional vector field can be

mapped into PQR space, where its location determines _ to first or-

der -- the local topological character of the vector field. The entire

PQR-space is partitioned into regions which correspond to distinct

topological patterns in the underlying vector field, and these "pre-

defined'" partitions can be variously combined to represent arbitrary

topological condition queries. See [1] for algebraic descriptions of

the partitions, and Figure 2 for a graphical portrayal.

The image of a vector field in PQR-space can reveal topological

features or patterns, which can be independently informative and

can also provide an opportunity to respond to the data with data-

driven condition queries. Locating a topological region or feature

in a vector field may be an end in itself, but topological classifica-

tions can additionally be used as logical branch points ("conditional

conditions") for further condition queries. Certain topological con-



Figure3:Results of three algorithms for locating _,ortex cores, in flow around a tapered cylinder. All the algorithms rely upon the same type of nonuniform directional condition

query., finding loci v, here the velocity field is parallel to a locally generated test vector field, tLeft) Velocit;, parallel to vorticity. (Middle) Velocity parallel to single real eigenvector

of velocity gradient tensor. IRight) Velocity parallel to single real eigenvector of vorticity gradient tensor. This latter algorithm appears more sensitive than the first two, connecting

the disjoint vortex core segments into an almost unbroken helical structure, while introducing only a moderate amount of noise.

ditions are often a first cut for many feature detection algorithms.

2.4.2 Linearlzed field element queries

One can use the Jacobian matrix to define a linear approximation of

a vector field about a given point or across a linear element i

v = vo + J(x - xo)

where Xo and vo are the position and vector value, respectively.

at the origin of the linearized field, and J is the Jacobian matrix.

One can always choose a coordinate system whose origin coincides

with the critical point of the strictly first order field, so that the

zeroth order terms (vo and xo) vanish. This allows one to locate

the image of a point or a linear element directly in the linear field

v = Jx, without the arbitrary offsets imposed by an "'external"

coordinate system.

Locating the image of a point or element in a linearized field in
terms of its "natural coordinates" is useful because the linearized

field possesses a natural geometric partitioning, which allows one

to pose a variety of condition queries on the point or element of the

originating vectur field. As discussed abo_,'e, the overall topology

of the linear lield partitioning is given by its PQR coordinates. As

discussed belo,_, the precise geometric descriptions of the partitions

are determined by the eigenvalues and eigenvectors of its Jacobian

matrix.

The eigenvalues of a 3 x 3 Jacobian matrix can be (i) all real

and all distinct, (ii) all real and not all distinct, or (iii) one real

value and a pair of complex conjugates. Case (ii) is degenerate
and will not be considered further here. If the eigenvalues are all

real and distinct, then the linear field is partitioned by three axes

of zero curvature trajectories (given by the eigenvectors) and three

planes of zero torsion trajectories (the planes spanned by the three
possible pairs of eigenvectors). The axes, and so the planes, are in

general not mutually orthogonal. If the eigenvalues consist of one
real value and a pair of complex conjugates, then the linear field

is partitioned by a single zero curvature trajectory (in the direction

of the single real eigenvector) and a single plane of zero torsion

trajectories (representing the intersection of the hyperplane spanned

by the complex eigenvectors with R3). The single real eigenvector

is in general not orthogonal to the complex eigenvector plane.

The eigenvectors and eigenvector planes in the linear vector field

represent important condition queries, which can be usefully ex-
ploited on any vector field for which the linear approximation is

reasonably accurate. Since a trajectory on an eigenvector is un-

cu_'ed, it must always stay on that eigenvector; and since all trajec-

tories in an eigenvector planes are torsion free, they must forever

stay in that eigenvector plane. For these reasons the eigenveclors

and eigenvector planes are called invariant manifolds. The intersec-
tion of the invariant manifolds represents a critical point. Depend-

ing on the signs of the eigenvalues, all non-invariant-manifold tra-

jectories either diverge from or asymptotically approach the eigen-

vector planes, which therefore represent surfaces of attachment or

separation. When the eigenvalues include a pair of complex con-

jugates, the single real eigenvector represents the axis of rotation

for swirling flow. This list of linear vector field properties associ-

ated with invariant subspaces is far from complete, and is intended

merely to illustrate the idea that a local linearized approximation of
a vector lield contains several intrinsic geometric loci which can be



usedasconditionqueriesto determine the local topological features

of a vector field.

Conceptually, one uses invariant manifolds as geometric repre-

sentations of condition queries by mapping an element into the lin-

earized field it induces, and determining if the image of the element

intersects the invariant manifolds. In practice, since the invariant

manifolds are lines and planes through the origin (i.e. vector sub-

spaces) they can be represented by single tangent or normal vectors,
and the intersection test reduces to one of parallelism or perpendic-

ularity. That is, from any vector field one can derive a test vector
field from the Jacobian eigenvectors or eigenvector plane normals,

and the test vector field can be used in a relative directional query

u perhaps selectively applied to its target vector field according to

a PQR-space location-based "stencil". See Figures 4 and 5.

2.5 Other spaces

Vector component space, PQR space, and linearized vector spaces

are just a few examples of countless derived spaces in which vec,

tor fields can be usefully plotted, and in which geometric repre-

sentations of condition queries can be conveniently framed. The

aforementioned spaces are particularly useful in these regards be-

cause they highlight generic topological and geometric features of
three-dimensional vector fields, and because they contain symme-

tries or natural partitions that make possible simple and meaning-

ful geometric representations of complex condition queries. Other

spaces with these properties include curvature/torsion space, curva-
ture/torsion/magnitude space, divergence/gradient magnitude/curl

magnitude space, and eigenvalue space. Note that these spaces are
not all three-dimensional.

For domain-specific vector field analyses, there may be natural

domain-specific spaces in which vector fields can be informatively

queried. Henze [2] discussed some "aerocentric" possibilities for
two-dimensional flow fields.

Another class of possibilities relies upon transforming a target
vector field into some other vector field. Condition queries "di-

rectly" on the derived vector field then serve "indirectly" as con-

dition queries on the original target vector field, modulated by the

transformation. For example, a derived vector field might be the

gradient of the magnitude of a target vector field. A simple geomet-

ric condition query on the derived vector field asking for locations

with high magnitude that are pointing North, is also a condition

query on the target vector field asking for places where, locally,

more Northerly vectors are larger than more Southerly ones.

2.6 Complex condition queries

Condition queries on vector fields can be arbitrarily complex. One

can ima_ne posing condition queries built from geometric, topo-

logical, positional, relational, and temporal aspects of a target vec-

tor field location. A complex condition query can involve any kind

of logical composition of basic vector field attributes. Since the

emphasis here is on representing condition queries as geometric ob-

jects, it is helpful to imagine their logical composition in terms of
Boolean models in solid model construction. As noted above, it is

also sometimes useful to use the outcome of a condition query as a

logical branch point (a swit:ch statement) for further queries.

3 Examples

3.1 Velocity component space

For flow visualization, a primary target vector field for condition

queries is the velocity field, tt is informative to visualize the veloc-

ity field as a distribution of points in velocio' component space. The

mapping of velocity vectors into their component space is known as

the hodograph transform.

Typically, a number of major flow features are revealed as large-

scale distribution patterns in velocity component space; and there

are generally a multitude of more subtle arrangements. For exam-

ple, in the hemispherical cylinder dataset shown in Figure 1, one

can identify the freestream, two primary vortices, and a prominent

region of flow reversal. These features are also evident when the

velocity vectors are normalized so that they all lie on the unit direc-

tion sphere.

Simple geometric partitionings of the velocity component space
image can distinguish interesting and important regions of a flow.

For instance, one could select the half of the direction sphere oppo-

site the freestream to identify regions of flow reversal. In Figure 1,

a selection of directions "steeper" than the freestream reveals areas

where the flow is deflected up off the nose, and also where it is be-

ing swept upwards into the two primary vortices. One could refine
the directional selection with a radial partition, for instance to show

regions where the upward-diverted flow has been accelerated rela-

tive to the freestream. This example shows how data partitioning

can be guided by the geometric structure of its image in a derived

space, and also by the intrinsic geometric structure of the derived

space itself.

3.2 Vortex cores

An important but somewhat ill-defined feature of many flows is the

vortex, loosely described as a swirling region of flow. Much at-

tention is given to vortex cores, loosely described as the axes of
swirling flows. In some flows vortices are very compact structures,

and the location of the core is a good indication of the location of

the entire vortex; and even for flows with very "open" vortices, the

cores can serve as a good indicator of overall topological structure.

3.2.1 Velocity and vorticity

One way to locate vortices is to look for regions where the velocity

field is parallel to its own curl (see Figure 3). This is a nonuni-
form directional condition query with the velocity and vorticity

fields playing the roles of target and test. In Behrami flows veloc-

ity/vorticity parallelism holds everywhere, but in the more general
case the condition is restricted to one-dimensional loci. We might

call such space curves "Beltrami lines". If the velocity field is nor-
malized, the Beltrami lines will be loci of maximum helicity; and

this helicity condition is very nearly realized anyway in many phys-
ical flows.

3.2.2 Velocity gradient tensor

An important vortex core finder was popularized by Sujudi in [6].

As originally described, the algorithm locates regions where the ve-

locity gradient tensor has complex conjugate eigenvalues, and also
where the local velocity field is zero after it has been reduced by the

velocity in the direction of the single real eigenvector. As noted by
Roth and Peikert [5], the latter condition is equivalent to the veloc-

ity vector being parallel to the real eigenvector, and this in turn is

equivalent to the condition of zero curvature in the local linearized

velocity field.

We can interpret the "reduced velocity" algorithm in terms of

two condition queries represented by statements of position in two
three-dimensional derived spaces.

The requirement that the velocity gradient tensor has complex

conjugate eigenvalues is met if and only if the tensor invariants fall

in the appropriate regions of PQR-space (see Figure 2). The result

of a query with this condition alone identifies regions with swirling

flow. but also regions with shearing flow (see Figure 4). There exists



Figure4: The two part condition query for vortex cores. (Top left) The first part of the query is represented by the regions in PQR-space which correspond to complex eigenvalues

(notice the "jet" of points which extend into the complex region). (Bottom lef!) Results of the first query, revealing ihe high-shear boundary tayer, and two "rails"' of swirling Nov,

extending along both sides of the top of the cylinder. (Top right) The second part of the query refines the first, querying the initial results for linear elements which are "spiked'" by the

single real eigenvector in the local linearized approximation to the flow. (Bottom right) Results of the second query, indicating line segments which are axes of the locally linearized

swirling flow.

the possibility of refining the algorithm at this point, by restricting

the PQR-space selection to one or the other of two complex regions,

in order to select either inward-spiralling or outward-spiralling vor-
tices.

After the PQR-space "topological prescreening", we can repre-
sent the zero reduced velocity condition geometrically as the single

real eigenvector in the local lincarized approximation of the vector

field. Since the linear approximation is derived from the positions

and velocity values of the vertices of a tetrahedron, one can locate

the image of the tetrahedron in the linearized field. Vertex posi-

tions in the linearized flow field indicate precisely the vertex veloc-

ity values; interior points of the tetrahedral image indicate linearly

interpolated values. If the image of a linear element intersects the

real eigenvector -- that is, if the image of a tetrahedron is "spiked"

by the real eigenvector -- then that element contains a segment of

vortex core, whose precise location is easily determined by simple

linear interpolation. The condition is illustrated in Figure 4. One

can see graphically why this condition can be imposed by requir-

ing the local velocity to be parallel to the real eigenvector. One

can also see why the zero-curvature condition identifies local flow

alignment with the real eigenvector, since in the linearized field, the
real eigenvector provides the only uncurved trajectory in town.

3.2.3 Vorticity gradient tensor

One can represent the reduced velocity vortex core condition by
means of a test vector field derived from the real eigenvectors of

the velocity field Jacobian, and a PQR-space "stencil" guiding the

applicability of a condition of parallelism. One can carry out pre-

cisely the same test with a test vector field derived from the real

eigenvectors of the vorticity field -- that is, one transforms the ve-

locity field with the curl operator, then derives its real eigenvectors.

and in places where the eigenvalues contain complex conjugates,

one tests for parallelism with the velocity field. Sample results are

shown in Figure 3. Note that while this algorithm would be hard to

describe in reduced velocity terms, from the geometric viewpoint it

is virtually identical to the reduced velocity strategy, and except for

the additional requirement of a curl operator, the two algorithms

require precisely the same geometric operations. (Actually, since

f_ = -1 x a;/2, where fl is the antisymmetric part ofVv andw is

the vorticity, the relationship to the reduced velocity algorithm can

be demonstrated algebraically -- and will be done so elsewhere.)



3.2.4 Higher-ordervortex cores

Roth and Peiken [5] have described a "higher-order" vortex core

finder, and have provided evidence that it locates curved vortex
cores more accurately than do linear methods. Their algorithm re-

duces to a simple test of parallelism, between the velocity field and
a derived test vector field b. In steady flows, b = 3Jv + Tvv,

where v is the target vector field, 3 is its Jacobian, and T is its

Hessian (matrix of second derivatives.

3.3 Separation surfaces

"Separated flow" is evidently of great interest to aeronautical en-
gineers, but despite the extensive literature on the subject it is
hard to find any clear definition of the phenomenon. Kenwright

[3] presented an operational definition of separation lines on two-
dimensional surfaces, and Kenwright, Henze and Levit [4] dis-

cussed this algorithm and a closely related one explicitly in terms

of vector field parallelism. Here we propose an operational defini-

tion for separation surfaces in three-dimensional flow fields, using

geometric representations of condition queries.

The condition query seeking separation surfaces uses the veloc-

ity field as its target vector field, and has two parts. The first part is
a "topological prescreen', represented by those loci in PQR-space

where flow diverges from a single invariant manifold. These loci

are simply the places which signify a single real positive eigenvalue
of the Jacobian matrix. The two remaining eigenvalues can either

be real and negative, or complex conjugates. The second part of

the separation surface condition query is represented by the invari-
ant manifold from which flow diverges in the linearized approx-

imations of the vector field (at locations which have satisfied the

topological test). If the image of a linear element in the linearized
field intersects the divergent invariant manifold, then that element

contains a section of separation surface, whose precise location is

easily obtained by simple linear interpolation. The conditions and

sample results for both the real and complex cases are shown in

Figure 5.

4 Conclusions

By their nature, condition queries can reveal any regions with

clearly definable characteristics in distributed data such as three-
dimensional vector fields. These locations can range from arbitrar-

ily defined "regions of momentary interest" to bona fide features,
whose definitions themselves are the subject of theoretical concern.

One benefit of considering feature detection strategies in terms of

condition queries is that it forces one to immediately confront the

operational definition of a proposed feature. One need only look at
the aeronautics literature concerning vortices or separation surfaces,

for example, to see the sorts of confusion and misguided efforts that
arise when a clear operational definition of a "feature" is lacking.

Because condition queries can be so generally framed and ap-

plied, a systematic principle for their description and use can be im-

mensely helpful from both a conceptual and a practical standpoint.

it has been argued here that with respect to three-dimensional vector

fields, representing condition queries geometrically in spaces de-

rived from the field data provides just this sort of organizing theme.

The geometric viewpoint permits an economy of description and

conceptualization that is applicable across a wide variety of ex-

ploratory and analytic techniques. This same unification carries
over to the actual computer implementations of these techniques,

which need only support a handful of basic geometric operations

to provide the foundation for a panoply of feature detection algo-
rithms.

The examples here focused on flow fields, which have tradi-

tionally provided much of the impetus for scientific visualization

of three-dimensional vector fields. Only a few very basic derived

spaces were considered -- namely, vector component space, PQR-

space, and the locally linearized vector space -- and only a few

basic geometric representations were considered in those spaces

namely, points, lines, planes, spheres and cones, and the sur-
faces that make up the natural partitioning of PQR-space. With
this small collection of shapes and spaces, we were able to opera-
tionally define critical points, isodirection lines, isongrmal planes,
isomagnitude loci, several existing vortex core detection algorithms

and a new one, and a new separation surface algorithm. The actual
implementation of all the queries described here relied primarily
on a vector parallelism/perpendicularity finder, a vector magnitude

tester, and a PQR-space Iocator.
That a geometric approach to condition queries on three-

dimensional vector fields works so well should be no surprise since
vector fields are, in the end, geometric objects. A great deal of the

power of this approach comes from the fact that complex, domain-
specific details are pushed into the various derived space mappings,
allowing very involved conditions to be described in simple geo-
metric terms, and reducing what might be tedious or difficult eval-
uation of conditions to a few simple and routine geometric opera-
tions.
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